{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "4Taf4-erLdt1" }, "source": [ "## Use Glove in Pytorch to Finish NLP task - sentiment analysis\n", "Presented by: Long Xu\n", "Contact: xulong3@mail2.sysu.edu.cn or you can find me in the wecom group chat." ] }, { "cell_type": "markdown", "metadata": { "id": "R4HY9cPzLasO" }, "source": [ "Word embeddings can provide more meaningful vector representations of words. Using pre-trained word embeddings in NLP tasks can greatly improve training efficiency. In this tutorial, I will share with you how to use pre-trained **GloVe** word embeddings in PyTorch and use them to complete a simple NLP task - sentiment analysis.\n", "https://nlp.stanford.edu/projects/glove/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "id": "H-PBi0IEM4fg" }, "source": [ "## Glove Word Embedding\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Sqs4ERy4NIjl" }, "source": [ "GloVe is an **unsupervised learning algorithm** for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase **interesting linear substructures** of the word vector space." ] }, { "cell_type": "markdown", "metadata": { "id": "oBhEoO1jOKkS" }, "source": [ "\n", "\n", "* Wikipedia+gigaword(6B)\n", "* crawler(42B)\n", "* crawler(840B)\n", "* twitter(27B)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "E8QB_RrRPY1c" }, "source": [ "According to the size of the word embedding vector, it can be divided into different dimensions such as 50 dims, 100 dims, 200 dims, etc." ] }, { "cell_type": "markdown", "metadata": { "id": "jMWbG8Z2PpqR" }, "source": [ "We do not need to GloVe on our own, we can use official glove." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#download the dataset we need\n", "import urllib.request\n", "import tarfile\n", "import os\n", "\n", "url = \"https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz\"\n", "save_path = \"aclImdb_v1\"\n", "\n", "urllib.request.urlretrieve(url, save_path)\n", "\n", "\n", "with tarfile.open(save_path, 'r:gz') as tar:\n", " tar.extractall()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# colab environment\n", "# !pip install torch==2.2.1+cu121 torchvision==0.17.1+cu121 torchaudio==2.2.1+cu121 torchtext==0.17.1 -f https://download.pytorch.org/whl/torch_stable.html " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.13.1+cu117\n" ] } ], "source": [ "import torch\n", "print(torch.__version__) #modelarts of huaweicloud\n", "import torchtext" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "xxUUoK2_9AZL" }, "outputs": [], "source": [ "import torch\n", "from torchtext.vocab import GloVe # GloVe is well embedded in the torchtext package, easy to use" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EDlBJmoW9ENa", "outputId": "5171de94-1162-4c03-e4a6-08ce6b13ce1c" }, "outputs": [], "source": [ "glove = GloVe(name='6B', dim=100)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([0.8798])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from torch.nn.functional import cosine_similarity\n", "cat_vec = glove.get_vecs_by_tokens(['cat'])\n", "dog_vet = glove.get_vecs_by_tokens(['dog'])\n", "cosine_similarity(cat_vec, dog_vet)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "70Y0vNg1-hwT", "outputId": "8cd75432-9147-461e-f2a0-52e3fd42e3e4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000],\n", " [ 0.3668, -0.0684, 0.2483, -0.3375, 0.8622, -0.3554, 0.5974, 0.3588,\n", " -0.0489, 0.2077, 0.5716, -0.3194, 0.2442, 0.1925, -0.2414, 0.0193,\n", " 0.2527, 0.2217, -0.3872, 0.1858, 0.0425, -0.1987, 0.5122, 1.0127,\n", " 0.2462, -0.1484, 0.3403, -0.4819, 0.2935, -0.2058, 0.1011, 0.5394,\n", " -0.0551, -0.2674, -0.2362, 0.1941, 0.3256, 0.2670, -0.7003, -0.1265,\n", " -0.0400, -0.1269, 0.3574, -0.0255, 0.3822, 0.0805, 0.5139, -1.1916,\n", " -0.3035, -0.9837, -0.3032, -0.2324, 0.3917, 0.6209, -0.2342, -2.4306,\n", " -0.3120, 0.2025, 1.3618, 0.2672, -0.5367, 0.3688, -0.4156, -0.4474,\n", " 0.5197, -0.1808, -0.2543, 0.2538, 0.5296, 0.4168, 0.4412, 0.4566,\n", " -0.7514, 0.3024, -0.8125, -0.0619, 0.2169, 0.4603, -1.0819, -0.2741,\n", " 0.4917, 0.2430, 0.0773, 0.0366, -0.3204, -0.0267, 0.1401, -0.3633,\n", " -0.2605, 0.4131, 0.0760, -0.0543, -0.1023, 0.6122, -0.2879, 0.3588,\n", " -0.0892, 0.5206, 0.3982, -0.9714],\n", " [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000],\n", " [-0.1077, 0.1105, 0.5981, -0.5436, 0.6740, 0.1066, 0.0389, 0.3548,\n", " 0.0635, -0.0942, 0.1579, -0.8166, 0.1417, 0.2194, 0.5850, -0.5216,\n", " 0.2278, -0.1664, -0.6823, 0.3587, 0.4257, 0.1902, 0.9196, 0.5756,\n", " 0.4618, 0.4236, -0.0954, -0.4275, -0.1657, -0.0568, -0.2959, 0.2604,\n", " -0.2661, -0.0704, -0.2766, 0.1582, 0.6982, 0.4308, 0.2795, -0.4544,\n", " -0.3380, -0.5818, 0.2236, -0.5778, -0.2686, -0.2042, 0.5639, -0.5852,\n", " -0.1436, -0.6422, 0.0055, -0.3525, 0.1616, 1.1796, -0.4767, -2.7553,\n", " -0.1321, -0.0477, 1.0655, 1.1034, -0.2208, 0.1867, 0.1318, 0.1512,\n", " 0.7131, -0.3521, 0.9135, 0.6178, 0.7099, 0.2395, -0.1457, -0.3786,\n", " -0.0460, -0.4737, 0.2385, 0.2054, -0.1900, 0.3251, -1.1112, -0.3634,\n", " 0.9868, -0.0848, -0.5401, 0.1173, -1.0194, -0.2442, 0.1277, 0.0139,\n", " 0.0804, -0.3541, 0.3495, -0.7226, 0.3755, 0.4441, -0.9906, 0.6121,\n", " -0.3511, -0.8316, 0.4529, 0.0826],\n", " [ 0.2309, 0.2828, 0.6318, -0.5941, -0.5860, 0.6326, 0.2440, -0.1411,\n", " 0.0608, -0.7898, -0.2910, 0.1429, 0.7227, 0.2043, 0.1407, 0.9876,\n", " 0.5253, 0.0975, 0.8822, 0.5122, 0.4020, 0.2117, -0.0131, -0.7162,\n", " 0.5539, 1.1452, -0.8804, -0.5022, -0.2281, 0.0239, 0.1072, 0.0837,\n", " 0.5501, 0.5848, 0.7582, 0.4571, -0.2800, 0.2522, 0.6896, -0.6097,\n", " 0.1958, 0.0442, -0.3114, -0.6883, -0.2272, 0.4618, -0.7716, 0.1021,\n", " 0.5564, 0.0674, -0.5721, 0.2374, 0.4717, 0.8277, -0.2926, -1.3422,\n", " -0.0993, 0.2814, 0.4160, 0.1058, 0.6220, 0.8950, -0.2345, 0.5135,\n", " 0.9938, 1.1846, -0.1636, 0.2065, 0.7385, 0.2406, -0.9647, 0.1348,\n", " -0.0072, 0.3302, -0.1236, 0.2719, -0.4095, 0.0219, -0.6069, 0.4076,\n", " 0.1957, -0.4180, 0.1864, -0.0327, -0.7857, -0.1385, 0.0440, -0.0844,\n", " 0.0491, 0.2410, 0.4527, -0.1868, 0.4618, 0.0891, -0.1819, -0.0152,\n", " -0.7368, -0.1453, 0.1510, -0.7149]])\n" ] } ], "source": [ "# Get vectors\n", "tensor = glove.get_vecs_by_tokens(['', '1998', '199999998', ',', 'cat'], True)\n", "print(tensor)" ] }, { "cell_type": "markdown", "metadata": { "id": "mcsIsvQKQMPT" }, "source": [ "This function provided by PyTorch is very convenient. If the token is not in GloVe, the function will return a vector of all zeros. If you run the above code, you can observe something interesting: the empty string and uncommon numbers like 199999998 are not in the vocabulary, while the common numbers like 1998 and punctuation are in the vocabulary." ] }, { "cell_type": "markdown", "metadata": { "id": "r8rGmORoQoM0" }, "source": [ "The GloVe class internally maintains a matrix, an array of vectors for each word. Therefore, GloVe needs a **mapping table** to map words to vector array indexs. **glove.itos** and **glove.stoi** complete the mapping between indexs and word strings. For example, with the following code, we can know the size of the vocabulary and access the first few words of the vocabulary:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AMxuy-BP-vzR", "outputId": "b99afe95-4800-4027-ee06-0ac01e4c9ae8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "400000\n", "the , . of\n" ] } ], "source": [ "myvocab = glove.itos\n", "print(len(myvocab))\n", "print(myvocab[0], myvocab[1], myvocab[2], myvocab[3])" ] }, { "cell_type": "markdown", "metadata": { "id": "i-r8OTZVRyKp" }, "source": [ "Let's understand the meaning of word embedding through a practical example. Word embeddings are vectors, and the relationship between the vectors often corresponds to the semantic relationship. Using the relative relationship of word embeddings, we can answer the question \"x1 is to y1, who is x2 to?\". For example, if a man is to a woman, then a king is to a queen. Suppose the vector we are looking for is y2, we want x1-y1=x2-y2, that is, find a vector y2 that is closest to x2-(x1-y1). This process can be described by the following code. " ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "okJaylv5-4-l", "outputId": "82660090-3ce9-45f2-bedb-dfa65eb05e3f" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "queen\n", "short\n", "yellow\n" ] } ], "source": [ "def get_counterpart(x1, y1, x2):\n", " \"\"\"Find y2 that makes x1-y1=x2-y2\"\"\"\n", " # Convert input words to their corresponding indices in the GloVe vocabulary\n", " x1_id = glove.stoi[x1] # Get index of x1 in GloVe vocabulary\n", " y1_id = glove.stoi[y1] # Get index of y1 in GloVe vocabulary\n", " x2_id = glove.stoi[x2] # Get index of x2 in GloVe vocabulary\n", " \n", " # Retrieve word vectors for x1, y1, and x2 from GloVe embeddings\n", " x1, y1, x2 = glove.get_vecs_by_tokens([x1,y1, x2], True)\n", " \n", " # Calculate the target vector: x2 - x1 + y1\n", " # This represents the vector relationship we want to preserve\n", " target = x2 - x1 + y1\n", " \n", " # Initialize variables to track maximum similarity and corresponding word index\n", " max_sim = 0 \n", " max_id = -1 # Index of the word with maximum similarity\n", " \n", " # Iterate through all words in the custom vocabulary (myvocab)\n", " for i in range(len(myvocab)):\n", " # Get the word vector for the current vocabulary word\n", " vector = glove.get_vecs_by_tokens([myvocab[i]], True)[0]\n", " \n", " # Compute cosine similarity between target vector and current word vector\n", " # torch.dot computes the dot product as a measure of similarity\n", " cossim = torch.dot(target, vector)\n", " \n", " # Update max similarity and index if current similarity is higher\n", " # and the word is not one of the input words (x1, y1, x2)\n", " if cossim > max_sim and i not in {x1_id, y1_id, x2_id}:\n", " max_sim = cossim\n", " max_id = i\n", " \n", " # Return the word from myvocab with the highest similarity\n", " return myvocab[max_id]\n", "\n", "\n", "print(get_counterpart('man', 'woman', 'king'))\n", "print(get_counterpart('more', 'less', 'long'))\n", "print(get_counterpart('apple', 'red', 'banana'))" ] }, { "cell_type": "markdown", "metadata": { "id": "Y8hkOiBETJtV" }, "source": [ "The sentiment analysis task is a relatively simple two-category NLP task: given a passage, whether the sentiment of the output passage is positive or negative.\n", "\n", "\n", "* **Positive**: I went and saw this movie last night after being coaxed to by a few friends of mine. I’ll admit that I was reluctant to see it because from what I knew of Ashton Kutcher he was only able to do comedy. I was wrong. Kutcher played the character of Jake Fischer **very well**, and Kevin Costner played Ben Randall with such professionalism.\n", "* **Negative**: This is a pale imitation of 'Officer and a Gentleman.' There is **NO chemistry** between Kutcher and the unknown woman who plays his love interest. The dialog is **wooden**, the situations **hackneyed**.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "jWf1MF51V-ES" }, "source": [ "These reviews are selected from a large dataset of movies from Stanford University. It contains movie reviews on **IMDb**. This data set is the most commonly used data set in sentiment analysis, and most beginers will use it to train a sentiment analysis model when learning NLP." ] }, { "cell_type": "markdown", "metadata": { "id": "SPFW9VPCWv1S" }, "source": [ "![image.png]()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "Ch_xzt3VADpo" }, "outputs": [], "source": [ "import os\n", "def read_imdb(dir='aclImdb', split='pos', is_train=True):\n", " subdir = 'train' if is_train else 'test'\n", " dir = os.path.join(dir, subdir, split)\n", " lines = []\n", " for file in os.listdir(dir):\n", " with open(os.path.join(dir, file), 'rb') as f:\n", " line = f.read().decode('utf-8')\n", " lines.append(line)\n", " return lines" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xqA-za5zC5nD", "outputId": "b409c136-88f0-4451-ec2a-510b1ca7a600" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['a', ',', 'b']\n" ] } ], "source": [ "from torchtext.data import get_tokenizer\n", "\n", "tokenizer = get_tokenizer('basic_english')\n", "print(tokenizer('a, b'))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-FyMlyz_DHnR", "outputId": "e21fb8be-41ac-4e44-c8c5-9d2128cee196" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Length of the file: 12500\n", "lines[0]: This has to be one of the most beautiful, moving, thought provoking films around. It's good family entertainment and at the same time makes you think very hard about the issues involved. Every time I see the \"ghost of Zac riding the bike through the puddle at the end I can't help but cry my eyes out. John Thaw's performance is so touching and it is a shame he is no longer with us. Gone but not forgotten. A outstanding film. Full marks.\n", "lines[0] tokens: ['this', 'has', 'to', 'be', 'one', 'of', 'the', 'most', 'beautiful', ',', 'moving', ',', 'thought', 'provoking', 'films', 'around', '.', 'it', \"'\", 's', 'good', 'family', 'entertainment', 'and', 'at', 'the', 'same', 'time', 'makes', 'you', 'think', 'very', 'hard', 'about', 'the', 'issues', 'involved', '.', 'every', 'time', 'i', 'see', 'the', 'ghost', 'of', 'zac', 'riding', 'the', 'bike', 'through', 'the', 'puddle', 'at', 'the', 'end', 'i', 'can', \"'\", 't', 'help', 'but', 'cry', 'my', 'eyes', 'out', '.', 'john', 'thaw', \"'\", 's', 'performance', 'is', 'so', 'touching', 'and', 'it', 'is', 'a', 'shame', 'he', 'is', 'no', 'longer', 'with', 'us', '.', 'gone', 'but', 'not', 'forgotten', '.', 'a', 'outstanding', 'film', '.', 'full', 'marks', '.']\n" ] } ], "source": [ "from torchtext.data import get_tokenizer\n", "lines = read_imdb()\n", "print('Length of the file:', len(lines))\n", "print('lines[0]:', lines[0])\n", "tokenizer = get_tokenizer('basic_english')\n", "tokens = tokenizer(lines[0])\n", "print('lines[0] tokens:', tokens)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "x3BX2ChaDSEP", "outputId": "a0a296b1-534c-4441-d007-0dc8a6df5201" }, "outputs": [], "source": [ "from torch.utils.data import DataLoader, Dataset\n", "from torchtext.data import get_tokenizer\n", "from torchtext.vocab import GloVe\n", "\n", "\n", "GLOVE_DIM = 100\n", "GLOVE = GloVe(name='6B', dim=GLOVE_DIM)\n", "\n", "\n", "class IMDBDataset(Dataset):\n", " def __init__(self, is_train=True, dir='data/aclImdb'):\n", " super().__init__()\n", " self.tokenizer = get_tokenizer('basic_english')\n", " pos_lines = read_imdb(dir, 'pos', is_train)\n", " neg_lines = read_imdb(dir, 'neg', is_train)\n", " self.lines = pos_lines + neg_lines\n", " self.pos_length = len(pos_lines)\n", " self.neg_length = len(neg_lines)\n", "\n", " def __len__(self):\n", " return self.pos_length + self.neg_length\n", "\n", " def __getitem__(self, index):\n", " sentence = self.tokenizer(self.lines[index])\n", " x = GLOVE.get_vecs_by_tokens(sentence)\n", " label = 1 if index < self.pos_length else 0\n", " return x, label" ] }, { "cell_type": "markdown", "metadata": { "id": "SXLxfSEIYRYt" }, "source": [ "When PyTorch DataLoader obtains a batch of Dataset data, it actually calls **Dataset.\\_\\_getitem\\_\\_** first to obtain several samples, and then stitches all the samples into a batch. For example, use **\\_\\_getitem\\_\\_** to obtain 4 image tensors of [3, 10, 10], and then stitch them into a batch of [4, 3, 10, 10]. However, sequence data usually have different lengths, and **\\_\\_getitem\\_\\_** may obtain word embedding arrays of unequal lengths such as [10, 100], [15, 100]." ] }, { "cell_type": "markdown", "metadata": { "id": "tCgM84zjZmgy" }, "source": [ "To solve this problem, we have to manually write a function that combines all tensors into a batch. This function is the **collate_fn** function of DataLoader. Our **collate_fn** should be written like this:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "WICY0BI8Z24K" }, "outputs": [], "source": [ "def collate_fn(batch):\n", " x, y = zip(*batch)\n", " x_pad = pad_sequence(x, batch_first=True)\n", " y = torch.Tensor(y)\n", " return x_pad, y" ] }, { "cell_type": "markdown", "metadata": { "id": "Z9OD9D3aZ6SP" }, "source": [ "The input batch of collate_fn is an array of the results of each \\_\\_getitem\\_\\_. For example, in our tutorial, for the first time to obtain a positive sentence of length 10, __getitem__ returns (Tensor[10, 100], 1); for the second time to obtain a negative sentence of length 15, __getitem_ _ returns (Tensor[15, 100], 0). Then, the content of the input batch is: [(Tensor[10, 100], 1), (Tensor[15, 100], 0)] \n", "\n", "We can neatly convert this into two tuples with x, y = zip(*batch):x = (Tensor[10, 100], Tensor[15, 100]), y = (1, 0) \n", "\n", "After that, PyTorch's pad_sequence can fill the array of unequal-length sequences into a whole batch tensor according to the maximum length. That is, after this function, x_pad becomes: x_pad = Tensor[2, 15, 100]\n", "\n", "The batch_first of pad_sequence determines whether the batch is in the first dimension. If it is False, the resulting tensor has shape [15, 2, 100].\n", "\n", "pad_sequence can also determine the padding content, and the default padding is 0. \n", "\n", "\n", " " ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "VLeH99CuEAZM" }, "outputs": [], "source": [ "import torch\n", "from torch.nn.utils.rnn import pad_sequence\n", "\n", "def get_dataloader(dir='aclImdb'):\n", " def collate_fn(batch):\n", " x, y = zip(*batch)\n", " x_pad = pad_sequence(x, batch_first=True)\n", " y = torch.Tensor(y)\n", " return x_pad, y\n", "\n", " train_dataloader = DataLoader(IMDBDataset(True, dir),\n", " batch_size=32,\n", " shuffle=True,\n", " collate_fn=collate_fn)\n", " test_dataloader = DataLoader(IMDBDataset(False, dir),\n", " batch_size=32,\n", " shuffle=True,\n", " collate_fn=collate_fn)\n", " return train_dataloader, test_dataloader" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "JDa2Huh7FdiQ" }, "outputs": [], "source": [ "from torch import nn\n", "class RNN(torch.nn.Module):\n", " def __init__(self, hidden_units=64, dropout_rate=0.5):\n", " super().__init__()\n", " self.drop = nn.Dropout(dropout_rate)\n", " self.rnn = nn.GRU(GLOVE_DIM, hidden_units, 1, batch_first=True)\n", " self.linear = nn.Linear(hidden_units, 1)\n", " self.sigmoid = nn.Sigmoid()\n", "\n", " def forward(self, x: torch.Tensor):\n", " # x shape: [batch, max_word_length, embedding_length]\n", " emb = self.drop(x)\n", " output, _ = self.rnn(emb)\n", " output = output[:, -1]\n", " output = self.linear(output)\n", " output = self.sigmoid(output)\n", "\n", " return output" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "zPuJLM7pFl0J" }, "outputs": [], "source": [ "device = 'cuda:0'\n", "\n", "train_dataloader, test_dataloader = get_dataloader()\n", "model = RNN().to(device)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vqL5-kBRFp79", "outputId": "214739bf-6075-4576-9db2-ef62a5af3ce2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0. loss: 0.6934672594070435\n", "Epoch 1. loss: 0.6929126977920532\n", "Epoch 2. loss: 0.6916374564170837\n", "Epoch 3. loss: 0.6909961700439453\n", "Epoch 4. loss: 0.689192533493042\n", "Epoch 5. loss: 0.6464381217956543\n", "Epoch 6. loss: 0.4718573987483978\n", "Epoch 7. loss: 0.3859955668449402\n", "Epoch 8. loss: 0.3578636646270752\n", "Epoch 9. loss: 0.3450615406036377\n", "Epoch 10. loss: 0.32949769496917725\n", "Epoch 11. loss: 0.3207785189151764\n", "Epoch 12. loss: 0.3144107758998871\n", "Epoch 13. loss: 0.3047332465648651\n", "Epoch 14. loss: 0.3007034957408905\n", "Epoch 15. loss: 0.2887532711029053\n", "Epoch 16. loss: 0.2887987494468689\n", "Epoch 17. loss: 0.2833702862262726\n", "Epoch 18. loss: 0.2852843701839447\n", "Epoch 19. loss: 0.2748873233795166\n", "Epoch 20. loss: 0.2750954329967499\n", "Epoch 21. loss: 0.2722353935241699\n", "Epoch 22. loss: 0.2695784568786621\n", "Epoch 23. loss: 0.26367488503456116\n", "Epoch 24. loss: 0.26122328639030457\n", "Epoch 25. loss: 0.2593787908554077\n", "Epoch 26. loss: 0.2570563554763794\n", "Epoch 27. loss: 0.2550010681152344\n", "Epoch 28. loss: 0.2549012303352356\n", "Epoch 29. loss: 0.2526344656944275\n", "Epoch 30. loss: 0.247743159532547\n", "Epoch 31. loss: 0.2498960942029953\n", "Epoch 32. loss: 0.24333757162094116\n", "Epoch 33. loss: 0.2437007576227188\n", "Epoch 34. loss: 0.2462003231048584\n", "Epoch 35. loss: 0.24142664670944214\n", "Epoch 36. loss: 0.2437993288040161\n", "Epoch 37. loss: 0.24092960357666016\n", "Epoch 38. loss: 0.2363073229789734\n", "Epoch 39. loss: 0.2353615015745163\n", "Epoch 40. loss: 0.2338671237230301\n", "Epoch 41. loss: 0.23543184995651245\n", "Epoch 42. loss: 0.23143352568149567\n", "Epoch 43. loss: 0.2309177815914154\n", "Epoch 44. loss: 0.2363603264093399\n", "Epoch 45. loss: 0.22826024889945984\n", "Epoch 46. loss: 0.22883331775665283\n", "Epoch 47. loss: 0.23002013564109802\n", "Epoch 48. loss: 0.22971011698246002\n", "Epoch 49. loss: 0.22750939428806305\n", "Epoch 50. loss: 0.22622466087341309\n", "Epoch 51. loss: 0.2246144711971283\n", "Epoch 52. loss: 0.22550545632839203\n", "Epoch 53. loss: 0.2243306189775467\n", "Epoch 54. loss: 0.22168390452861786\n", "Epoch 55. loss: 0.21889589726924896\n", "Epoch 56. loss: 0.22113782167434692\n", "Epoch 57. loss: 0.22470778226852417\n", "Epoch 58. loss: 0.2217176854610443\n", "Epoch 59. loss: 0.22118981182575226\n", "Epoch 60. loss: 0.21866659820079803\n", "Epoch 61. loss: 0.2175607979297638\n", "Epoch 62. loss: 0.21843615174293518\n", "Epoch 63. loss: 0.2146735042333603\n", "Epoch 64. loss: 0.2139790952205658\n", "Epoch 65. loss: 0.21336378157138824\n", "Epoch 66. loss: 0.21297763288021088\n", "Epoch 67. loss: 0.2176819145679474\n", "Epoch 68. loss: 0.21801139414310455\n", "Epoch 69. loss: 0.2145390510559082\n", "Epoch 70. loss: 0.21072889864444733\n", "Epoch 71. loss: 0.21235904097557068\n", "Epoch 72. loss: 0.20949867367744446\n", "Epoch 73. loss: 0.21345573663711548\n", "Epoch 74. loss: 0.20737095177173615\n", "Epoch 75. loss: 0.21057772636413574\n", "Epoch 76. loss: 0.20948177576065063\n", "Epoch 77. loss: 0.20646873116493225\n", "Epoch 78. loss: 0.20903337001800537\n", "Epoch 79. loss: 0.20799784362316132\n", "Epoch 80. loss: 0.2072860449552536\n", "Epoch 81. loss: 0.20564407110214233\n", "Epoch 82. loss: 0.20685015618801117\n", "Epoch 83. loss: 0.21029867231845856\n", "Epoch 84. loss: 0.21078412234783173\n", "Epoch 85. loss: 0.20617659389972687\n", "Epoch 86. loss: 0.2050018459558487\n", "Epoch 87. loss: 0.20389209687709808\n", "Epoch 88. loss: 0.20479126274585724\n", "Epoch 89. loss: 0.20785142481327057\n", "Epoch 90. loss: 0.20597250759601593\n", "Epoch 91. loss: 0.20249052345752716\n", "Epoch 92. loss: 0.2056071013212204\n", "Epoch 93. loss: 0.20395542681217194\n", "Epoch 94. loss: 0.20316976308822632\n", "Epoch 95. loss: 0.20478659868240356\n", "Epoch 96. loss: 0.20521263778209686\n", "Epoch 97. loss: 0.2066359668970108\n", "Epoch 98. loss: 0.20095206797122955\n", "Epoch 99. loss: 0.2047610729932785\n" ] } ], "source": [ "# train\n", "\n", "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n", "citerion = torch.nn.BCELoss()\n", "for epoch in range(100):\n", "\n", " loss_sum = 0\n", " dataset_len = len(train_dataloader.dataset)\n", "\n", " for x, y in train_dataloader:\n", " batchsize = y.shape[0]\n", " x = x.to(device)\n", " y = y.to(device)\n", " hat_y = model(x)\n", " hat_y = hat_y.squeeze(-1)\n", " loss = citerion(hat_y, y)\n", "\n", " optimizer.zero_grad()\n", " loss.backward()\n", " torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)\n", " optimizer.step()\n", "\n", " loss_sum += loss * batchsize\n", "\n", " print(f'Epoch {epoch}. loss: {loss_sum / dataset_len}')\n", "\n", "torch.save(model.state_dict(), 'rnn.pth')\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "B92fqNM-KTWp", "outputId": "7ab3e2b3-8f27-4a7a-9e4b-440a31d3f8a8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.90552\n" ] } ], "source": [ "# test\n", "\n", "# model.load_state_dict(\n", "# torch.load('rnn.pth', 'cuda:0'))\n", "\n", "accuracy = 0\n", "dataset_len = len(test_dataloader.dataset)\n", "model.eval()\n", "for x, y in test_dataloader:\n", " x = x.to(device)\n", " y = y.to(device)\n", " with torch.no_grad():\n", " hat_y = model(x)\n", " hat_y.squeeze_(1)\n", " predictions = torch.where(hat_y > 0.5, 1, 0)\n", " score = torch.sum(torch.where(predictions == y, 1, 0))\n", " accuracy += score.item()\n", "accuracy /= dataset_len\n", "\n", "print(f'Accuracy: {accuracy}')" ] }, { "cell_type": "markdown", "metadata": { "id": "ybdfnFX7bpTZ" }, "source": [ "## Other useful tools: Hugging face https://huggingface.co/\n" ] }, { "cell_type": "markdown", "metadata": { "id": "PMXlKeUkd-tj" }, "source": [ "So many interesting open-source models, like GPT-2, CLIP, BERT, T5 Language model,etc. And it is easy to use.\n", "https://zhuanlan.zhihu.com/p/535100411" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EX83QS3KdkhM", "outputId": "5e97d302-88be-4a5f-8159-c9933fdf74cb" }, "outputs": [], "source": [ "# ! pip install transformers" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 368, "referenced_widgets": [ "0efaa591c4b54b93b29bd69721d66b31", "1f172a738ef94b83ae662a89d9dbbe62", "5bb99d1007fc4a4a8856e904b378615e", "5cd97d49a9a048db9d98866c42e32110", "c3f92a9d4c894d0cb80bb54323fcfcd6", "857b7b858ca64896ae49a5b314e93439", "7c354ccc9f164a2584617eabe2ad08d4", "c1cdbd492cf84bc3acde9da7810f786a", "a73f6b88fdb44af697057bfe5055bb37", "937228cc59af474dae0f299f6379aa79", "9f19fb55995841b481d938dcb387b0b3", "a8825b6f36414dbeaf4026d81c9b08e9", "824aff761b22429385ec9010019b8c10", "ff8c117aa7b747e1963d5cb641e47114", "1acf38c44f4d43568a467bbeb1e97a4a", "30aa741beadd4ac2911f5ccb27e4405e", "0887f89d0ee44fd88875bc46c4b59d57", "bf6807fcb9ca412c85e65f387fe85722", "7a98448742e94892baf3b24849a38458", "14d4e8b86ef54e93a0858ea7e9f0072d", "58baa8ce9c2e43cd8152a58d4ecbd438", "b755ce6fa3144a13a15388b75aad273e", "9b73d0029fe5464ebf23809ca9e62e16", "b37783c1e4b647b9aca1db9a20a68f91", "b58c9a8d05aa47ee82548e06ba5a4799", "7c67f1b4d9b34492ae772a103e20fe45", "03ebe654db5742c6ae86fcf95f2282e4", "0e48cc2661ba41268f5711800ba1e649", "3b97a4fae0684e0f878153b21db5cef4", "f68cf7907a1f42e79064b146bc5d532c", "d8579cc9452f40efb5d59b35965c09e1", "5143452f882d45fd978d756560c0b0f4", "f694d0aba43a4c0da514e54aedc18b68", "002877424ef04670987fe767030907f1", "d4116be457ee483e892a16e584a1f92b", "ea3f57c97650471c9f05696682e8bfa1", "6bb267b5c91d47b08d2bcc55127f0016", "6760203bdfb84018af7d7ea3b9f3fd4d", "5d1bee6606464bf89a4f29451ca884b2", "3090f48db7404f6a83443110c9718f0b", "c10d4345b03341f48e6f3393494bdd25", "8962569b83834c9da97eaaf6e16b72bf", "9a1ed14d6ece4e7b82cde01fae6e4bab", "bb90c44ad3794eacb2fce813940fcf2b", "6ef3faaab3c946c2826f31ebfacc7bca", "1b526080028a422683e24c17023fce5e", "69fef8b0eaa34bb5b422142a7d3772a8", "b4ed44c11b61434892310d03f4661728", "fcc840dd2dd74d118318c7da0492152f", "359329f484364952a7e99880e9eea7da", "77e0e85ba0884fc189e8dd816888b792", "61b6ee991f514dc6913e7782160f2efd", "f975fd5849114f638808ca7eb9788593", "02624e7e9ad54ba09d544ac002242cb1", "ce547fff1ba240aab1017e92cbb5d4c5", "59f5f82ad8fa4cffa43858b63161ba43", "e27034fd69f346a08ae7fb0e0807e72c", "dd48ee460fd54beabbe6b30e5b3eabbd", "4386d570231248b895a7bd3cc4b03f8e", "684d583551d94d54a6f9c953c94558aa", "cc7e1638a7e14e36aa9d8f8c199d2fa9", "b37b8d1dfde4492384963023a8f450d7", "ca837db77ade45299ccb8f01214a8bf4", "607558dbc3eb471cb11fab329b73faa7", "a878fb10014d48a4b7db93afbae892f2", "0857477126d04faf96394181d9e31b0d" ] }, "id": "WIRjKPoCW2Wa", "outputId": "7b5b3e14-d3e1-48c0-9de7-3e50f15ef23e" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading config.json: 665B [00:00, 307kB/s] \n", "Downloading model.safetensors: 100%|██████████| 548M/548M [00:36<00:00, 15.2MB/s] \n", "Downloading tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 4.22kB/s]\n", "Downloading vocab.json: 1.04MB [00:02, 372kB/s] \n", "Downloading merges.txt: 456kB [00:01, 272kB/s] \n", "Downloading tokenizer.json: 1.36MB [00:05, 260kB/s]\n", "Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n" ] }, { "data": { "text/plain": [ "[{'generated_text': \"Hello, I'm a language model, I'm writing a new language for you. But first, I'd like to tell you about the language itself\"},\n", " {'generated_text': \"Hello, I'm a language model, and I'm trying to be as expressive as possible. In order to be expressive, it is necessary to know\"},\n", " {'generated_text': \"Hello, I'm a language model, so I don't get much of a license anymore, but I'm probably more familiar with other languages on that\"},\n", " {'generated_text': \"Hello, I'm a language model, a functional model... It's not me, it's me!\\n\\nI won't bore you with how\"},\n", " {'generated_text': \"Hello, I'm a language model, not an object model.\\n\\nIn a nutshell, I need to give language model a set of properties that\"}]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "os.environ[\"HF_ENDPOINT\"] = \"https://hf-mirror.com\"\n", "from transformers import pipeline, set_seed\n", "generator = pipeline('text-generation', model='gpt2')\n", "set_seed(42)\n", "generator(\"Hello, I'm a language model,\", max_length=30, num_return_sequences=5)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "FJSSBJUWdN2c" }, "outputs": [], "source": [ "\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "002877424ef04670987fe767030907f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d4116be457ee483e892a16e584a1f92b", "IPY_MODEL_ea3f57c97650471c9f05696682e8bfa1", "IPY_MODEL_6bb267b5c91d47b08d2bcc55127f0016" ], "layout": "IPY_MODEL_6760203bdfb84018af7d7ea3b9f3fd4d" } }, "02624e7e9ad54ba09d544ac002242cb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "03ebe654db5742c6ae86fcf95f2282e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0857477126d04faf96394181d9e31b0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0887f89d0ee44fd88875bc46c4b59d57": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0e48cc2661ba41268f5711800ba1e649": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0efaa591c4b54b93b29bd69721d66b31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1f172a738ef94b83ae662a89d9dbbe62", "IPY_MODEL_5bb99d1007fc4a4a8856e904b378615e", "IPY_MODEL_5cd97d49a9a048db9d98866c42e32110" ], "layout": "IPY_MODEL_c3f92a9d4c894d0cb80bb54323fcfcd6" } }, "14d4e8b86ef54e93a0858ea7e9f0072d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "1acf38c44f4d43568a467bbeb1e97a4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58baa8ce9c2e43cd8152a58d4ecbd438", "placeholder": "​", "style": "IPY_MODEL_b755ce6fa3144a13a15388b75aad273e", "value": " 548M/548M [00:02<00:00, 234MB/s]" } }, "1b526080028a422683e24c17023fce5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_359329f484364952a7e99880e9eea7da", "placeholder": "​", "style": "IPY_MODEL_77e0e85ba0884fc189e8dd816888b792", "value": "Downloading (…)olve/main/merges.txt: 100%" } }, "1f172a738ef94b83ae662a89d9dbbe62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_857b7b858ca64896ae49a5b314e93439", "placeholder": "​", "style": "IPY_MODEL_7c354ccc9f164a2584617eabe2ad08d4", "value": "Downloading (…)lve/main/config.json: 100%" } }, "3090f48db7404f6a83443110c9718f0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "30aa741beadd4ac2911f5ccb27e4405e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "359329f484364952a7e99880e9eea7da": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3b97a4fae0684e0f878153b21db5cef4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4386d570231248b895a7bd3cc4b03f8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a878fb10014d48a4b7db93afbae892f2", "placeholder": "​", "style": "IPY_MODEL_0857477126d04faf96394181d9e31b0d", "value": " 1.36M/1.36M [00:01<00:00, 1.02MB/s]" } }, "5143452f882d45fd978d756560c0b0f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "58baa8ce9c2e43cd8152a58d4ecbd438": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "59f5f82ad8fa4cffa43858b63161ba43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e27034fd69f346a08ae7fb0e0807e72c", "IPY_MODEL_dd48ee460fd54beabbe6b30e5b3eabbd", "IPY_MODEL_4386d570231248b895a7bd3cc4b03f8e" ], "layout": "IPY_MODEL_684d583551d94d54a6f9c953c94558aa" } }, "5bb99d1007fc4a4a8856e904b378615e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c1cdbd492cf84bc3acde9da7810f786a", "max": 665, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a73f6b88fdb44af697057bfe5055bb37", "value": 665 } }, "5cd97d49a9a048db9d98866c42e32110": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_937228cc59af474dae0f299f6379aa79", "placeholder": "​", "style": "IPY_MODEL_9f19fb55995841b481d938dcb387b0b3", "value": " 665/665 [00:00<00:00, 24.7kB/s]" } }, "5d1bee6606464bf89a4f29451ca884b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "607558dbc3eb471cb11fab329b73faa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "61b6ee991f514dc6913e7782160f2efd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6760203bdfb84018af7d7ea3b9f3fd4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "684d583551d94d54a6f9c953c94558aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "69fef8b0eaa34bb5b422142a7d3772a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_61b6ee991f514dc6913e7782160f2efd", "max": 456318, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f975fd5849114f638808ca7eb9788593", "value": 456318 } }, "6bb267b5c91d47b08d2bcc55127f0016": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9a1ed14d6ece4e7b82cde01fae6e4bab", "placeholder": "​", "style": "IPY_MODEL_bb90c44ad3794eacb2fce813940fcf2b", "value": " 1.04M/1.04M [00:01<00:00, 940kB/s]" } }, "6ef3faaab3c946c2826f31ebfacc7bca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1b526080028a422683e24c17023fce5e", "IPY_MODEL_69fef8b0eaa34bb5b422142a7d3772a8", "IPY_MODEL_b4ed44c11b61434892310d03f4661728" ], "layout": "IPY_MODEL_fcc840dd2dd74d118318c7da0492152f" } }, "77e0e85ba0884fc189e8dd816888b792": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7a98448742e94892baf3b24849a38458": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7c354ccc9f164a2584617eabe2ad08d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7c67f1b4d9b34492ae772a103e20fe45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5143452f882d45fd978d756560c0b0f4", "placeholder": "​", "style": "IPY_MODEL_f694d0aba43a4c0da514e54aedc18b68", "value": " 124/124 [00:00<00:00, 4.38kB/s]" } }, "824aff761b22429385ec9010019b8c10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0887f89d0ee44fd88875bc46c4b59d57", "placeholder": "​", "style": "IPY_MODEL_bf6807fcb9ca412c85e65f387fe85722", "value": "Downloading pytorch_model.bin: 100%" } }, "857b7b858ca64896ae49a5b314e93439": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8962569b83834c9da97eaaf6e16b72bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "937228cc59af474dae0f299f6379aa79": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9a1ed14d6ece4e7b82cde01fae6e4bab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9b73d0029fe5464ebf23809ca9e62e16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b37783c1e4b647b9aca1db9a20a68f91", "IPY_MODEL_b58c9a8d05aa47ee82548e06ba5a4799", "IPY_MODEL_7c67f1b4d9b34492ae772a103e20fe45" ], "layout": "IPY_MODEL_03ebe654db5742c6ae86fcf95f2282e4" } }, "9f19fb55995841b481d938dcb387b0b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a73f6b88fdb44af697057bfe5055bb37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a878fb10014d48a4b7db93afbae892f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a8825b6f36414dbeaf4026d81c9b08e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_824aff761b22429385ec9010019b8c10", "IPY_MODEL_ff8c117aa7b747e1963d5cb641e47114", "IPY_MODEL_1acf38c44f4d43568a467bbeb1e97a4a" ], "layout": "IPY_MODEL_30aa741beadd4ac2911f5ccb27e4405e" } }, "b37783c1e4b647b9aca1db9a20a68f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0e48cc2661ba41268f5711800ba1e649", "placeholder": "​", "style": "IPY_MODEL_3b97a4fae0684e0f878153b21db5cef4", "value": "Downloading (…)neration_config.json: 100%" } }, "b37b8d1dfde4492384963023a8f450d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b4ed44c11b61434892310d03f4661728": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_02624e7e9ad54ba09d544ac002242cb1", "placeholder": "​", "style": "IPY_MODEL_ce547fff1ba240aab1017e92cbb5d4c5", "value": " 456k/456k [00:00<00:00, 516kB/s]" } }, "b58c9a8d05aa47ee82548e06ba5a4799": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f68cf7907a1f42e79064b146bc5d532c", "max": 124, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d8579cc9452f40efb5d59b35965c09e1", "value": 124 } }, "b755ce6fa3144a13a15388b75aad273e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "bb90c44ad3794eacb2fce813940fcf2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "bf6807fcb9ca412c85e65f387fe85722": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c10d4345b03341f48e6f3393494bdd25": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c1cdbd492cf84bc3acde9da7810f786a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c3f92a9d4c894d0cb80bb54323fcfcd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ca837db77ade45299ccb8f01214a8bf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cc7e1638a7e14e36aa9d8f8c199d2fa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ce547fff1ba240aab1017e92cbb5d4c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d4116be457ee483e892a16e584a1f92b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5d1bee6606464bf89a4f29451ca884b2", "placeholder": "​", "style": "IPY_MODEL_3090f48db7404f6a83443110c9718f0b", "value": "Downloading (…)olve/main/vocab.json: 100%" } }, "d8579cc9452f40efb5d59b35965c09e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "dd48ee460fd54beabbe6b30e5b3eabbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca837db77ade45299ccb8f01214a8bf4", "max": 1355256, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_607558dbc3eb471cb11fab329b73faa7", "value": 1355256 } }, "e27034fd69f346a08ae7fb0e0807e72c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cc7e1638a7e14e36aa9d8f8c199d2fa9", "placeholder": "​", "style": "IPY_MODEL_b37b8d1dfde4492384963023a8f450d7", "value": "Downloading (…)/main/tokenizer.json: 100%" } }, "ea3f57c97650471c9f05696682e8bfa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c10d4345b03341f48e6f3393494bdd25", "max": 1042301, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_8962569b83834c9da97eaaf6e16b72bf", "value": 1042301 } }, "f68cf7907a1f42e79064b146bc5d532c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f694d0aba43a4c0da514e54aedc18b68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f975fd5849114f638808ca7eb9788593": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "fcc840dd2dd74d118318c7da0492152f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ff8c117aa7b747e1963d5cb641e47114": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a98448742e94892baf3b24849a38458", "max": 548118077, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_14d4e8b86ef54e93a0858ea7e9f0072d", "value": 548118077 } } } } }, "nbformat": 4, "nbformat_minor": 4 }