
ECE371
Neural Network and Deep Learning

Prof. Dr. Ruimao Zhang

zhangrm27@mail.sysu.edu.cn
Room N205, Engineering Building 3
School of Electronics and Communication Engineering , SYSU

Lecture 2
Convolution Neural Network
Part I

01 Computational Graph of Linear Models
02 Fully-connected Layer
03 Some Other Layers for Modern Neural Network
04 Convolutional Neural Network

Outline

01 Computational Graph of Linear Models
02 Fully-connected Layer
03 Some Other Layers for Modern Neural Network
04 Convolutional Neural Network

Outline

Graphical representations of linear regression
• Recall that linear regression and its cost function can be formulated as

• We here represent linear regression as a computational graph
• Each input node represents one individual feature value of one individual feature

vector
• A constant input node is also utilized. Weights associated with input nodes are denoted

as and b
• The ground-truth target is denoted as

Graphical representations of logistic regression
• Similarly, the logistic classification and its cost function are

• We here represent linear regression as a computational graph
• Each input node represents one individual feature value of one individual sample

• A constant input node is also utilized. Weights associated with input nodes are denoted
as and b

• The ground-truth label (either 0 or 1) is denoted as

Graphical representations of C-class logistic regression

• Similarly, the C-class logistic classification and its cost function are

• are then normalized by the following softmax function

• The loss functions are denoted as

Fully-connected layer in neural networks
• The computational graph of multi-class (C-class) logistic classification algorithm can be drawn as

01 Computational Graph of Linear Models
02 Fully-connected Layer
03 Some Other Layers for Modern Neural Network
04 Convolutional Neural Network

Outline

Fully-connected (linear) layer in neural networks
• The linear calculation to calculate from are named as fully-connected

layer in neural networks
• It is one of the basic structure blocks in neural networks

• The linear computation between x and y can be denoted as a matrix-vector multiplication y = W x + b,
where and are learnable parameters and is the feature vector of one sample

Gradients of fully connected layer
• The softmax or sigmoid functions are usually called the non-linearity (or activation) function in

neural networks
• Recall that we have the following computational graph

• Given the loss function

• Our ultimate goal is to obtain and to train the neural network

Computational graph
• Computational graph is a graphical representation of a function composition
• Example

• The derivatives can be calculated backward sequentially without redundant computation

Gradients of fully connected layer
• Recall that the derivatives along computational
 graph can be calculated sequentially
• Eventually, we obtain

• We therefore can calculate the following gradients sequentially and use chain rule to obtain the
above gradients

• Gradients of cross-entropy loss layer

Gradients of softmax layer
• We are interested in calculating the gradients

• We will be using quotient rule of derivatives. For

• where in our case, we have

Gradients of softmax layer
• If. ,

• If ,

Gradients of softmax layer
• If. ,

• If ,

Gradients of softmax layer
• Therefore, the gradients of the softmax layer can be defined as

• Combining gradients of the two layers, cross-entropy layer and softmax layer, the gradient of
can be calculated as for

• If and ,

• If and ,

Gradients of fully-connected layer
• Recall that a fully-connected layer is calculated as

• Gradients and can be calculated as

• Multiplying the gradients from the above layer according to chain rule of derivatives results in

• In matrix and vector format, we have

Gradients of the fully-connected layer
• We can further calculate gradients of fully-connected layers inputs

• Gradients of the fully-connected layer can be calculated as

• Gradients of therefore can be calculated as

 Converting this into a vector format, we have

Forward computation and back-propagation
• Each layer’s calculation can be categorized into forward and backward calculation
• Forward computation: for calculating classification probabilities from bottom layer to top layers

sequentially
• Backward computation (back-propagation): for calculating gradients for parameter update from top

layer to bottom layers sequentially

Figure: In each training iteration, (1) forward computation from
bottom to top and then (2) back-propagation from top to bottom.

Gradients of a mini-batch of samples
• Recall that we mentioned that for large-scale data, the neural networks are generally trained with

Stochastic Gradient Descent
• Stochastic Gradient Descent calculates derivatives using a mini-batch of training

samples

• The gradients for updating parameters will be calculated as the average of the gradients of the mini-
batch with batch size N,

Summary
• Fully-connected layer

u Input: output:
u Learnable parameters: W and b
u Forward input: x, forward output: y = W x + b
u Backward input:
u Backward output:

• Cross-entropy loss layer
u Input: output: J
u Learnable parameters: None
u Forward input: foward output:

u Backward output:

• A neural network can be considered as a structure consisting of the basic layers

Summary
• Fully-connected layer

u Input: output:
u Learnable parameters: W and b
u Forward input: x, forward output: y = W x + b
u Backward input:
u Backward output:

• Cross-entropy loss layer
u Input: output: J
u Learnable parameters: None
u Forward input: foward output:

u Backward output:

• A neural network can be considered as a structure consisting of the basic layers

Summary
• Softmax layer:

u Input: output:
u Learnable parameters: None
u Foward input: forward output:

u Backward input: ,

Backward output:

Multi-Layer Perceptron
• A neural network generally consists of multiple stacked fully-connected (linear) stacked together,

where each layer has their independent parameters to learn (in general cases)
• We generally do not draw non-linearity function layers between and after fully-connected layers and

do not draw
• However, the multiple fully connected layer has to be separated by non-linearity layers (e.g.,

softmax or sigmoid layers). Otherwise, multiple stacked fully-connected layer is equivalent to ONE
fully-connected layer

Multi-layer Perceptron
• Generally, a single linear layer with non-linearity function (e.g., logistic classification) does not have

enough capacity to model the underlying function
• Neural networks with > 2 fully-connected layers can approximate any highly non-linear function
• A 3-layer Multi-Layer Perceptron (MLP) can be illustrated below

The MNIST dataset
• The MNIST dataset is a large database of handwritten

digits that is commonly used for evaluating different
machine learning algorithms

• It contains 60,000 training images and 10,000 testing
images

• Each image is of size 32 × 32
• To use MLP to classify the digits, the 32 × 32 images

can be vectorized
• into 32 × 32 = 1024 feature vectors as inputs

Deeply learned feature representations
• Recall that in the begin of the course, we claimed that deep neural networks are “learning” features

instead of using manually designed features
• The last fully-connected layer with the non-linearity function layer can be considered as a linear classifier
• All the previous neural layers can be considered as a series of transformations that gradually transform

the input features into linearly separable features
• The low-level features captures more general information of samples of all classes
• The high-level features are closer to the final task

The learned weights
• The learned weights of each low-level neuron capture certain general patterns of all samples

01 Computational Graph of Linear Models
02 Fully-connected Layer
03 Some Other Layers for Modern Neural Network
04 Convolutional Neural Network

Outline

Non-linearity layers
• Sigmoid (function) layer

u Unlike softmax function, the sigmoid function only takes one value as input and output one
value each time

u Input: forward output:
u Backward input: backward output:
u Use scenarios:

n Back in 1990s-2000s, it was one of the most popular non-linearity function between fully
connected layers

n Can be used as the last layer of binary classification
n Can be used to gate the information flow through another neuron

Non-linearity layers
• Tanh (hyperbolic tangent function) layer

u Sigmoid function maps hyperbolic tangent function maps
u Forward input: forward output:

u Backward input: , backward output:

u It is now much less frequently used compared with sigmoid function

Non-linearity layers
• ReLU (Rectified Linear Unit) layer

u One of the most frequently used non-linear function since 2012, because of its fast convergence rate
u Forward input: , forward output:

u Backward input: , backward output:

Non-linearity layers
• Leaky ReLU (Rectified Linear Unit) layer

u Leaky ReLU is an improved version of the ReLU layer. It solves the problem of ReLU of
having no gradients when the input is less than 0

u Forward input: , forward output:

 where α is a constant
u Backward input: , backward output:

Non-linearity layers
• PReLU layer

u PReLU takes one step further by making the coefficient of leakage α to be learned during
network training

u Forward input: , forward output:

 where α is a learnable constant

u Backward input: , backward output:

u Parameter gradients:

Loss layers
• Mean Squared Error (MSE)/L2 loss layer

u Generally used for regression problem
u Forward inputs: and ground-truth forward output

u Backward output:

• L1 loss layer
u Also commonly used for regression problem, especially when there are many outliers
u Forward inputs: and ground-truth forward output

u Backward output:

Why do we need “deep” neural networks
• Theoretically, a three-layer neural network can approximate any non-linear function. Logistic

regression/classification can all be considered as a “shallow” three-layer neural network
• Then, why do we need “deep” neural networks?
• If the desired function is very complex, with three-layer neural networks, it might require an

exponentially increasing number of neurons in the hidden layers to well approximate the function
• However, with many layers, a small number of neurons in each layer would be enough to

approximate the desired function

Branching and concatenation
• A group of neurons can be connected by two different fully-connected layers (branches)

• Two feature vectors (branches) can also concatenate to generate a longer feature vector

Branching and concatenation
• A group of neurons can be connected by two different fully-connected layers (branches)

• Two feature vectors (branches) can also concatenate to generate a longer feature vector

Addition of two groups of neurons
• The two vectors of neurons can be added to obtain a group of neurons

Batch Normalization (BN) Layer
• Each dimension of the input feature vectors should be normalized by subtracting the mean over the

entire training set and then optionally divided by the standard deviation over the entire training set

• Recall that in mini-batch gradient descent, we train neural networks with mini-batches of samples
and each mini-batch might have different feature distributions (named covariance shift) because of
the small mini-batch size

• To handle different feature distributions in each iteration, the neural networks need to jointly handle
feature distribution variations and correctly classify the training samples, which prevent the network
from focusing on only learning for classification

Batch Normalization (BN) Layer (cont’d)
• The BN layer normalizes each input feature vector of a mini-batch
• Forward input: feature vector in a mini-batch

• To address the fact that in some cases the activations may actually need to differ from standardized
data, BN also introduces learnable scaling and offset

• We add a small constant to the variance estimate to ensure never dividing by zero
• Training:

u In practice, instead of estimating mean and standard deviation of each mini-batch, we keep a
running estimate of the batch feature mean and standard deviation

Batch Normalization (BN) Layer
• Each dimension of the input feature vectors should be normalized by subtracting the mean over the

entire training set and then optionally divided by the standard deviation over the entire training set

• Recall that in mini-batch gradient descent, we train neural networks with mini-batches of samples
and each mini-batch might have different feature distributions (named covariance shift) because of
the small mini-batch size

• To handle different feature distributions in each iteration, the neural networks need to jointly handle
feature distribution variations and correctly classify the training samples, which prevent the network
from focusing on only learning for classification

Ioffe and Szegedy,“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

Batch Normalization (BN) Layer (cont’d)
• Testing:

u There are three choices of mean and standard deviation during testing
1. Calculate the mean and standard deviation from the current batch
2. Use the running estimate of mean and standard deviation during training
3. Calculate the mean and standard deviation from the entire training set or a relative large sub-set of

the training set layer by layer
• Advantages of using BN layers

u Network trains faster: Each training iteration will actually be slower because of the extra calculations.
However, it should converge much more quickly, so training should be faster overall

u Allows higher learning rates: Gradient descent usually requires small learning rates for the network to
converge. And as networks get deeper, their gradients get smaller during back propagation so they require
even more iterations. Using batch normalization allows us to use much higher learning rates, which further
increases the speed at which networks train

u Makes weights easier to initialize: Batch normalization seems to allow us to be much less careful about
choosing our initial starting weights

u Makes more activation functions viable: For instance, Sigmoids lose their gradient pretty quickly when
used in neural networks

Dropout layer
• Deep neural networks can have many large model capacity because of their deep structures. They

are likely to overfit on small-scale dataset
• Some neurons easily become “inactive” during training, because a small number of other neurons

can perform well on the training set
• To mitigate the problem, the dropout layer randomly sets proportion of neurons to zero

and force the following the layer to use the remaining neuron responses for completing the
prediction task

Dropout layer
• Training:

• Forward input: dropout ratio p, input feature vector , forward output: randomly
set proportion p of feature values in to zero to obtain y, then multiplied by 1/(1-p)

• Backward input: , backward output:

• Testing/Inference:
• Forward input: dropout ratio p, input feature vector
• forward output:

Dropout layer
• In general, when using dropout layers, training errors (losses) will INCREASE
• For small-scale datasets, dropout layers are effective and decrease testing errors
• However, since the dropout layer is designed to prevent overfiting, it shows LESS to NONE

effectiveness on large-scale datasets

Figure: Test error on MINIST datasets for
different architectures with and without
dropout. The networks have 2 to 4 hidden
layers each with 1024 to 2048 units.

Modern MLPs
• A modern MLP can consist of several fully-connected layers, each of which is followed by a BN

layer and then a PReLU or Leaky ReLU non-linearity layer
• Each dimension of the input feature dimension should be normalized by first subtracting the mean

and then dividing by the standard deviation
• An MLP can have multiple losses either all at the topmost layer or at different layers

Modern MLPs (cont’d)
• A modern MLP can consist of several fully-connected layers, each of which is followed by BN layer

and then PReLU or Leaky ReLU non-linearity layer
• Each dimension of the input feature dimension should be normalized by first subtracting the mean

and then dividing by the standard deviation
• An MLP can have multiple losses either all at the topmost layer or at different layers

01 Computational Graph of Linear Models
02 Fully-connected Layer
03 Some Other Layers for Modern Neural Network
04 Convolutional Neural Network

Outline

Motivation of convolutional neural networks (CNNs)

• Although deeper neural networks have larger representation capability and better generalization, it is
difficult to extend the multi-layer feed-forward neural networks to very deep, since every layer is
fully connected.

• For example, given a large image, the number of parameters could be very large. How to alleviate
such limitation?

• People resort to two tricks:
• Sparse connection
• Shared parameters

Sparse connection
• Each input neuron only connects to partial output neurons
• Each output neuron only connects to a few neighboring input neurons. And the range of input

neurons is called receptive field.

Growing receptive field
• Receptive field will increase along the layer goes deeper.

Shared parameters
• Parameters at different spatial locations are shared.
• Consequently, as shown in the following example, the number of parameters in the convolution

filter is 3, while 5 × 5 = 25 in the fully connected layer.

Components of a Convolutional Network

Fully Connected Layer
32 × 32 × 3 image → stretch to 3072 × 1

Fully Connected Layer
32 × 32 × 3 image → stretch to 3072 × 1

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution Layer
32 × 32 × 3 image → preserve spatial structure

Convolution Layer

32 × 32 × 3 image

5 × 5 × 3 filter

Convolve the filter with the image i.e. “slide over
the image spatially, computing dot products”

Convolution Layer

32 × 32 × 3 image

5 × 5 × 3 filter

Convolve the filter with the image i.e. “slide over
the image spatially, computing dot products”

Filters always extend the full depth of the input volume

Convolution Layer

32 × 32 × 3 image

5 × 5 × 3 filter

1 number: the result of taking a dot product between the filter and a
small 5×5 × 3 chunk of the image (i.e. 5 × 5 × 3 = 75-dimensional
dot product + bias)

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

32 × 32 × 3 image

5 × 5 × 3 filter

activation map

convolve (slide) over all spatial locations

Convolution Layer

32 × 32 × 3 image

5 × 5 × 3 filter

convolve (slide) over all spatial locations

consider a second, green filter

activation maps

Convolution Layer

activation maps

We stack these up to get a “new image” of size 28 × 28 × 6!

Convolution Layer

For example, if we had 6 5 × 5 filters, we’ll get 6 separate activation maps:

ConvNet is a sequence of Convolution Layers,
interspersed with activation functions

CONV, ReLU
e.g. 6 5×5×3 filters

ConvNet is a sequence of Convolution Layers,
interspersed with activation functions

CONV, ReLU
e.g. 6 5×5×3 filters

CONV, ReLU
e.g. 10 5×5×6 filters

CONV,
ReLU

Preview

Preview

A closer look at spatial dimensions:

32 × 32 × 3 image

5 × 5 × 3 filter

activation map

convolve (slide) over all spatial locations

A closer look at spatial dimensions:

7 × 7 input (spatially) assume
3 × 3 filter ⇒ 5 × 5 output

A closer look at spatial dimensions:

7 × 7 input (spatially) assume 3 × 3 filter applied with stride 2

A closer look at spatial dimensions:

7 × 7 input (spatially) assume 3 × 3 filter applied with stride 2

A closer look at spatial dimensions:

7 × 7 input (spatially) assume 3 × 3 filter applied with stride 2 => 3 × 3 output!

A closer look at spatial dimensions:

7 × 7 input (spatially) assume 3 × 3 filter applied with stride 3 ?

A closer look at spatial dimensions:

7 × 7 input (spatially) assume 3 × 3 filter applied with stride 3 ?
doesn’t fit!
cannot apply 3 × 3 filter on 7 × 7 input with stride 3.

A closer look at spatial dimensions:

Output size: (N - F) / stride +1 e.g. N = 7, F = 3 :
stride 1 ⇒ (7 − 3)/1 + 1 = 5
stride 2 ⇒ (7 − 3)/2 + 1 = 3
stride 3 => (7 − 3)/3 + 1 = 2.33

In practice: Common to zero pad the border

e.g.
input 7 × 7, 3 × 3 filter,
applied with stride 1, pad with 1 pixel border
=>
what is the output?

(recall:)
(N − F) / stride + 1

In practice: Common to zero pad the border

e.g.
input 7 × 7, 3 × 3 filter,
applied with stride 1, pad with 1 pixel border
=>
what is the output?
7 × 7 output!

(recall:)
(N + 2P− F) / stride + 1

In practice: Common to zero pad the border

e.g.
input 7 × 7, 3 × 3 filter,
applied with stride 1, pad with 1 pixel border
=>
what is the output?
7 × 7 output!

In general, common to see CONV layers with stride 1,
filters of size FxF, and zero-padding with (F − 1)/2.
(will preserve size spatially)
e.g. F = 3 ⇒ zero pad with 1
F = 5 ⇒ zero pad with 2
F = 7 ⇒ zero pad with 3

Practice: about the model size

Input volume : 3×32 ×32

10 5 × 5 filters with stride 1 , pad 2

Output volume size: ?

Practice: about the model size

Input volume : 3×32 ×32

10 5 × 5 filters with stride 1 , pad 2

Output volume size:

（32 + 2×2 - 5）/ 1 + 1 = 32 spatially, so 10×32×32

Practice: about the model size

Input volume : 3×32 ×32

10 5 × 5 filters with stride 1 , pad 2

Output volume size: 10×32 ×32

Number of learnable parameters: ?

Practice: about the model size

Input volume : 3×32 ×32

10 5 × 5 filters with stride 1 , pad 2

Output volume size: 10×32 ×32

Number of learnable parameters: 760

Parameters per filter: 3×5 ×5 + 1 (for bias) = 76

 10 filter, so total is 10×76 = 760

Practice: about the model size

Input volume : 3×32 ×32

10 5 × 5 filters with stride 1 , pad 2

Output volume size: 10×32 ×32

Number of learnable parameters: 760

Number of multiply-add operations: ?

Practice: about the model size

Input volume : 3×32 ×32

10 5 × 5 filters with stride 1 , pad 2

Output volume size: 10×32 ×32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10×32 ×32 = 10,240 outputs;

each output is the inner product of two 3×5 ×5 tensors

(75 elems); total = 75 ×10240 = 768K

Pooling Layer
• Another way to downsample

Hyperparameter:

Kernel Size

Stride

Pooling function

Max Pooling

Pooling Layer Summary

• Input: C×H×W

• Hyperparameters:

• kernel size: K

• Stride: S

• Pooling function (max, avg)

• Output: C×H’×W’ where

• H’ = (H-K) / S + 1

• W’ = (W-K) / S + 1

• Learnable parameters: None!

Common settings:

max, K=2, S=2

max, K=3, S=2 (AlexNet)

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

Convolutional Networks Example:

SUN YAT-SEN UNIVERSITY 2025

Thanks for Listening
Prof. Dr. Ruimao Zhang

Room N-205， Engineering Building 3
zhangrm27@mail.sysu.edu.cn

